根号下的数的取值范围(√x有意义x的取值范围)
根号下的数的取值范围
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若an=b,那么a是b开n次方的n次方根或a是b的1/n次方(n≠0)。
根号就是开方的意思,现在接触的根号一般都是2次根号,就是没有角标的。意思是开2次方(平方)。他表示两个这个数相乘等于跟号内的数比如4=2,根号4=2。
不限于实数,即考虑虚数时,偶次根号下可以为负数,利用i=√-1即可。根号是用来表示对一个数或一个代数式进行开方运算的符号。若an=b,那么a是b开n次方的n次方根或a是b的1/n次方。
有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
√x有意义x的取值范围
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若an=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
根号下的数的取值范围是大于等于0在实数范围内。在实数范围内:偶次根号下不能为负数,其运算结果也不为负;奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数。
比如,.3、..3、3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“√̄”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写4是2,9是3,但是这种写法未得到普遍的认可与采纳。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。
1~20的根号表
有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。
先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。(这里只重点介绍笔顺和写法,可以根据印刷体参考本条模仿写即可,不硬性要求)
被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。